Name:

Period: Se

Seat#:

Directions: Try these problems. If you can DO them, check the box (\square). If you CANNOT do them, write some notes TO YOURSELF about what you need to study to succeed at these problems.

S7 – Quick Check #1

Ethyl alcohol, molar mass = 46.08 g/mol The heat of fusion of ethyl alcohol, ΔH_{fus} , is 4.98 kJ/mol. The heat of vaporization of ethyl alcohol alcohol, ΔH_{vap} , is 39.40 kJ/mol.

Phase Change Equations

Write an equation for alcohol vaporizing. Include the energy value.

Change on the Particulate Level

If alcohol molecules looked like O, draw a before and after picture of alcohol vaporizing.

Calculations

How much heat is needed to boil 10.0 grams of ethyl alcohol? (Show work as a single line equation.)

How much heat is released when 25.0 grams of liquid ethyl alcohol freezes? (Show work as a single line equation.)

S8 – Quick Check #2

Exothermic & Endothermic

When a solution of NaOH is neutralized by a solution of HCl, the solution gets very hot.

Is the water in the solution the *system* or the *surroundings*? Add "heat" to this molecular equation: $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(l)$ Draw the Potential Energy curve for this reaction. PE Time

Calorimetry

How much energy does it take to heat 150. grams of aluminum metal from 25 °C to 150. °C? The specific heat of aluminum is $0.900 \text{ J/g} \cdot ^{\circ}\text{C}$. (Show your work!)

If 375 J of energy is added to 25.0 mL of water at 20.0 °C, what is the final temperature of the water? The specific heat of water is $4.18 \text{ J/g} \cdot ^{\circ}\text{C}$. (Show your work!)

S9 – Quick Check #3

The specific heat of water is 4.18 $J/g \cdot C$. The molar mass of $C_3H_8 = 44.09 \text{ g/mol}$.

Calculating Enthalpy (ΔH) from Data:

A 3.00 gram sample of propane, C₃H₈, is burned and warms 100. g of water from 20.0°C to 100.0°C.

What is the ΔH of combustion for C₃H₈? _____ What is the sign of the ΔH ? _____

Heating Curves

Consider the following heating curve of ice at -30 °C to steam at 130 °C.

- a) Label the graph with "solid", "liquid", and "gas"
- b) In which segment is *boiling of the water* occurring? _
- c) Where on this curve would you use the formula, $q = mC\Delta T?$
- d) Describe what is happening to the H₂O as you move from point B to point D.
- e) ΔH_{fus} would be used as the H₂O goes from Point _____ to Point _____

S10 – Quick Check #4

1 – EXOTHERMIC AND ENDOTHERMIC

D

Time (minutes)

Temperature (°C)

B

C

Classify each statement as talking about an [EXO]thermic or [ENDO]thermic reaction:

 surroundings get hot	 ΔH is negative
 PE diagram is uphill	 PE diagram is downhill
 energy is a product	 surroundings get cold
 ΔH is positive	 products have more energy
 reactants have more energy	 energy is a reactant

2 – HEAT CALCULATIONS

A 45.0 mL sample of water is heated from 15.0°C to	If 5430 J of energy is used to heat 1.25 L of room
35.0°C. How many joules of energy have been absorbed	temperature water (23.0°C), what is the final temperature
by the water? (Show work)	of the water?

A 100. gram sample of aluminum (specific heat = $0.900 \text{ J} \cdot \text{g}^{-1} \cdot \text{°C}^{-1}$) in boiling water is added to an insulated cup containing 50.0 grams of water at 5.00°C. What will the final temperature of the mixture be? The specific heat of water is 4.184 J $\cdot \text{g}^{-1} \cdot \text{°C}^{-1}$.

4 – HEATS OF FUSION & VAPORIZATION

Knowing that the ΔH_{fus} for water is 6.02 kJ·mol⁻¹, calculate the following:

How much energy (in kJ) is absorbed by 45.0 g of ice as it melts?

What mass of ice can be melted with 75.0 kJ of energy?

5 – Δ **H FROM DATA**

When 10.0 grams of C_5H_{12} is burned, 453 kJ of energy is released.

What is the $\Delta H_{\text{combustion}}$ for C₅H₁₂?

When 10.0 grams of aluminum melts, 3.929 kJ of energy is required. What is the ΔH_{fus} of Al?

Iron ore can be converted to iron metal with CO gas.

 $\operatorname{FeO}(s) + \operatorname{CO}(g) \rightarrow \operatorname{Fe}(s) + \operatorname{CO}_2(g)$

Calculate the standard enthalpy change for this reaction from these reactions of iron oxides with CO :

- (1) $3 \operatorname{Fe}_2 O_3(s) + \operatorname{CO}(g) \rightarrow 2 \operatorname{Fe}_3 O_4(s) + \operatorname{CO}_2(g) \quad \Delta H^\circ = -47 \, \mathrm{kJ}$
- (2) $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$ $\Delta H^\circ = -25 \text{ kJ}$
- (3) $\operatorname{Fe}_3O_4(s) + \operatorname{CO}(g) \rightarrow 3\operatorname{FeO}(s) + \operatorname{CO}_2(g) \qquad \Delta H^\circ = 19 \, \text{kJ}$

7 - HESS'S LAW - SHORTCUT

chemical	$CO_2(g)$	$H_2O(l)$	$C_5H_{12}(l)$	$C_2H_5OH(l)$
ΔH_{f}	-393.5 kJ·mol ⁻¹	-285.8 kJ⋅mol ⁻¹	-173.1 kJ⋅mol ⁻¹	-277.6 kJ·mol ⁻¹

Given the above ΔH_f° 's, calculate the $\Delta H_{combustion}$ of pentane, C_5H_{12} .

Calculate the $\Delta H_{combustion}$ of ethyl alcohol, C₂H₅OH(*l*)

8 - MORE HESS'S LAW

chemical	$CO_2(g)$	$H_2O(l)$	$C_8H_{18}(l)$
$\Delta \mathbf{H_{f}}$	-393.5 kJ·mol ⁻¹	-285.8 kJ⋅mol ⁻¹	??? kJ⋅mol ⁻¹

Knowing that the $\Delta H_{combusion}$ of octane, C_8H_{18} , is -5508.9 kJ·mol⁻¹ calculate the ΔH_f of octane.